DP-500: Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI

¥5,529.00

________________________________________________________________

¿Quiere realizar este curso en modalidad telepresencial o presencial?

Póngase en contacto con nosotros por correo: info@nanforiberica.com, teléfonos: +34 91 031 66 78 / +34 605 98 51 30, WhatsApp: +34 685 60 05 91, o comunícate con Nuestras Oficinas

________________________________________________________________

Microsoft retiró el material DP-500: Designing and Implementing Enterprise-Scale Analytics Solutions Using Microsoft Azure and Microsoft Power BI el 30 de abril del 2024. El reemplazo de curso sugerido es DP-600: Microsoft Fabric Analytics Engineer

Descripción del curso

En este curso, se tratan métodos y prácticas para realizar análisis avanzados de datos a gran escala. Los alumnos aprovecharán la experiencia de análisis que tienen y aprenderán a implementar y administrar un entorno de análisis de datos, a consultar y transformar datos, a implementar y administrar modelos de datos y a explorar y visualizar datos. En este curso, los alumnos usarán Microsoft Purview, Azure Synapse Analytics y Power BI para crear soluciones de análisis.


Perfil del público

Los candidatos para este curso deben tener experiencia en el diseño, la creación y la implementación de soluciones de análisis de datos a escala empresarial. En concreto, los candidatos deben tener un conocimiento avanzado de Power BI, incluidos el procesamiento de datos en la nube y en el entorno local y la administración de repositorios de datos, junto con el uso de Power Query y Data Analysis Expressions (DAX). También deben ser expertos en consumir datos de Azure Synapse Analytics y deben tener experiencia en consultar bases de datos relacionales, analizar datos mediante Transact-SQL (T-SQL) y visualizar datos.


Elementos de esta colección

  • Exploración de los servicios de datos de Azure para el análisis moderno
  • Descripción de los conceptos de análisis de datos
  • Exploración del análisis de datos a escala
  • Introducción a Microsoft Purview
  • Descubra datos confidenciales con Microsoft Purview
  • Catalogación de artefactos de datos con Microsoft Purview
  • Administración de activos de Power BI con Microsoft Purview
  • Integración de Microsoft Purview y Azure Synapse Analytics
  • Introducción a Azure Synapse Analytics
  • Uso de un grupo de SQL sin servidor de Azure Synapse para consultar archivos en un lago de datos
  • Definición de la ingeniería de macrodatos con Apache Spark en Azure Synapse Analytics
  • Análisis de datos en un almacenamiento de datos relacional
  • Elección de un marco de modelo de Power BI
  • Escalabilidad en Power BI
  • Creación y administración de flujos de datos de Power BI escalables
  • Creación de relaciones de modelos de Power BI
  • Uso de las funciones de inteligencia de tiempo de DAX en modelos de Power BI 
  • Creación de grupos de cálculo
  • Aplicación de la seguridad de modelos de Power BI
  • Uso de herramientas para optimizar el rendimiento de Power BI
  • Conceptos avanzados de la visualización de datos
  • Supervisión de datos en tiempo real con Power BI
  • Creación de informes paginados
  • Provisión de gobernanza en un entorno de Power BI
  • Facilitación de la colaboración y el uso compartido en Power BI
  • Supervisión y auditoría del uso
  • Aprovisionamiento de capacidades Premium en Power BI
  • Establecimiento de una infraestructura de acceso a datos en Power BI
  • Ampliación del alcance de Power BI
  • Automatización de la administración de Power BI
  • Creación de informes mediante Power BI dentro de Azure Synapse Analytics
  • Diseño de una estrategia de administración del ciclo de vida de aplicaciones de Power BI
  • Creación y administración de una canalización de implementación de Power BI
  • Creación y administración de recursos de Power BI


Esquema del curso

Module 1: Introduction to data analytics on Azure
This module explores key concepts of data analytics, including types of analytics, data, and storage. Students will explore the analytics process and tools used to discover insights and learn about the responsibilities of an enterprise data analyst and what tools are available to build scalable solutions.
Lesson

  • Explore Azure data services for modern analytics
  • Understand concepts of data analytics
  • Explore data analytics at scale

After completing this module, students will be able to:

  • Describe types of data analytics
  • Understand the data analytics process
  • Define data job roles in analytics
  • Understand tools for scaling analytics solutions

Module 2: Govern data across an enterprise
This module explores the role of an enterprise data analyst in organizational data governance. Students will explore the use of Microsoft Purview to register and catalog data assets, to discover trusted assets for reporting, and to scan a Power BI environment.
Lesson

  • Introduction to Microsoft Purview
  • Discover trusted data using Microsoft Purview
  • Catalog data artifacts by using Microsoft Purview
  • Manage Power BI artifacts by using Microsoft Purview

After completing this module, students will be able to:

  • Browse, search, and manage data catalog assets.
  • Use data catalog assets with Power BI.
  • Use Microsoft Purview in Azure Synapse Studio.
  • Register and scan a Power BI environment using Microsoft Purview.

Module 3: Model, query, and explore data in Azure Synapse
This module explores the use of Azure Synapse Analytics for exploratory data analysis. Students will explore the capabilities of Azure Synapse Analytics including the basics of data warehouse design, querying data using T-SQL, and exploring data using Spark notebooks.

  • Lesson
  • Introduction to Azure Synapse Analytics
  • Use Azure Synapse serverless SQL pool to query files in a data lake
  • Analyze data with Apache Spark in Azure Synapse Analytics
  • Analyze data in a relational data warehouse

Lab : Query data in Azure
Lab : Explore data in Spark notebooks
Lab : Create a star schema model
After completing this module, students will be able to:

  • Understand when to use Azure Synapse Analytics in reporting solutions.
  • Query data with SQL.
  • Query data with Spark.

Module 4: Prepare data for tabular models in Power BI
This module explores the fundamental elements of preparing data for scalable analytics solutions using Power BI. Students will explore model frameworks, considerations for building data models that will scale, Power Query optimization techniques, and the implementation of Power BI dataflows.
Lesson

  • Choose a Power BI model framework
  • Understand scalability in Power BI
  • Optimize Power Query for scalable solutions
  • Create and manage scalable Power BI dataflows

Lab : Create a dataflow
After completing this module, students will be able to:

  • Choose an appropriate Power BI model framework.
  • Optimize Power Query.
  • Create and manage scalable Power BI dataflows.

Module 5: Design and build scalable tabular models
This module explores the critical underlying aspects of tabular modeling for building Power BI models that can scale. Students will learn about model relationships and model security, working with direct query, and using calculation groups.
Lesson

  • Create Power BI model relationships
  • Enforce model security
  • Implement DirectQuery
  • Create calculation groups
  • Use tools to optimize Power BI performance

Lab : Create model relationships
Lab : Enforce model security
Lab : Design and build tabular models
Lab : Create calculation groups
Lab : Use tools to optimize Power BI performance
After completing this module, students will be able to:

  • Understand and create Power BI model relationships.
  • Design and enforce Power BI model security.
  • Design and build scalable tabular models.
  • Create calculation groups.

Module 6: Implement advanced data visualization techniques by using Power BI
This module explores data visualization concepts including accessibility, customization of core data models, real-time data visualization, and paginated reporting.
Lesson

  • Understand advanced data visualization concepts
  • Customize core data models
  • Monitor data in real-time with Power BI
  • Create and distribute paginated reports in Power BI report builder

Lab : Monitor data in real-time with Power BI
Lab : Create and distribute paginated reports in Power BI Report Builder
After completing this module, students will be able to:

  • Understand and apply advanced data visualization concepts including accessibility.
  • Troubleshoot report performance issues.
  • Use real-time visuals in Power BI.
  • Create and distribute paginated reports.

Module 7: Implement and manage an analytics environment
This module explores key considerations for implementing and managing Power BI. Students will understand key recommendations for administration and monitoring of Power BI, including configuration and management of Power BI capacity.
Lesson

  • Provide governance in a Power BI environment
  • Facilitate collaboration and sharing in Power BI
  • Monitor and audit usage
  • Provision Premium capacity in Power BI
  • Establish a data access infrastructure in Power BI
  • Broaden the reach of Power BI
  • Automate Power BI administration
  • Build reports using Power BI within Azure Synapse Analytics

After completing this module, students will be able to:

  • Recommend Power BI administration settings.
  • Recommend a monitoring and auditing solution for a data analytics environment.
  • Configure and manage Power BI capacity.

Module 8: Manage the analytics development lifecycle
This module explores considerations for deployment, source control, and application lifecycle management of analytics solutions. Students will understand what to recommend and will be able to deploy and manage automated and reusable Power BI assets.
Lesson

  • Design a Power BI application lifecycle management strategy
  • Create and manage a Power BI deployment pipeline
  • Create and manage Power BI assets

Lab : Create reusable Power BI assets
After completing this module, students will be able to:

  • Recommend strategies for Power BI deployment and source control.
  • Recommend automation solutions for the analytics development lifecycle.

Module 9: Integrate an analytics platform into an existing IT infrastructure
This module explores the integration of a Power BI analytics solution into existing Azure infrastructure. Students will understand Power BI tenant and workspace configurations, along with considerations for Power BI deployment in an organization.
Lesson

  • Recommend and configure a Power BI tenant or workspace
  • Identify requirements for a solution, including features, performance, and licensing strategy
  • Integrate an existing Power BI workspace into Azure Synapse Analytics

After completing this module, students will be able to:

  • Recommend and configure a Power BI tenant or workspace.
  • Identify requirements for a solution, including features, performance, and licensing strategy.
  • Integrate an existing Power BI workspace into Azure Synapse Analytics.

    Requisitos previos

    Antes de asistir a este curso, se recomienda que los alumnos tengan:

    • Conocimientos básicos de los principales conceptos de los datos y cómo se implementan con los servicios de datos de Azure. Para obtener más información, consulte Microsoft Certified: Azure Data Fundamentals.
    • Experiencia en el diseño y la creación de modelos de datos escalables, la limpieza y transformación de los datos, así como la habilitación de características de análisis avanzadas que proporcionen un valor empresarial significativo con Microsoft Power BI. Para obtener más información, consulte Microsoft Certified: Power BI Data Analyst Associate.


    Idioma

    • Curso: Inglés
    • Labs: Inglés

    Información relacionada a la formación

    Soporte siempre a tu lado

    Soporte de formación: Siempre a tu lado

    Formación presencial y telepresencial

    ¿Necesitas otra modalidad formativa?

    bonificaciones

    Bonificaciones para empresas