Implementing a Machine Learning Solution with Microsoft Azure Databricks
nanforiberica
Implementing a Machine Learning Solution with Microsoft Azure Databricks. DP090T00
Modalidad
- Edición presencial (*)
- Edición online (Una vez que se registre recibirá el alta con el usuario y contraseña de acceso)
Detalles de la formación:
Azure Databricks is a cloud-scale platform for data analytics and machine learning. In this one-day course, you'll learn how to use Azure Databricks to explore, prepare, and model data; and integrate Databricks machine learning processes with Azure Machine Learning.
Perfil de público
This course is designed for data scientists with experience of Pythion who need to learn how to apply their data science and machine learning skills on Azure Databricks.
Al finalizar el curso
After completing this course, you will be able to:
- Provision an Azure Databricks workspace and cluster
- Use Azure Databricks to train a machine learning model
- Use MLflow to track experiments and manage machine learning models
- Integrate Azure Databricks with Azure Machine Learning
Course Outline
Module 1: Introduction to Azure Databricks
In this module, you will learn how to provision an Azure Databricks workspace and cluster, and use them to work with data.
Lesson
- Getting Started with Azure Databricks
- Working with Data in Azure Databricks
Lab: Getting Started with Azure Databricks
Lab: Working with Data in Azure Databricks
After completing this module, you will be able to:
- Provision an Azure Databricks workspace and cluster
- Use Azure Databricks to work with data
Module 2: Training and Evaluating Machine Learning Models
In this module, you will learn how to use Azure Databricks to prepare data for modeling, and train and validate a machine learning model.
Lesson
- Preparing Data for Machine Learning
- Training a Machine Learning Model
Lab: Preparing Data for Machine Learning
Lab: Training a Machine Learning Model
After completing this module, you will be able to use Azure Databricks to:
- Prepare data for modeling
- Train and validate a machine learning model
Module 3: Managing Experiments and Models
In this module, you will learn how to use MLflow to track experiments running in Azure Databricks, and how to manage machine learning models.
Lesson
- Using MLflow to Track Experiments
- Managing Models
Lab: Using MLflow to Track Experiments
Lab: Managing Models
After completing this module, you will be able to:
- Use MLflow to track experiments
- Manage models
Module 4: Integrating Azure Databricks and Azure Machine Learning
In this module, you will learn how to integrate Azure Databricks with Azure Machine Learning
Lesson
- Tracking Experiments with Azure Machine Learning
- Deploying Models
Lab: Running Experiments in Azure Machine Learning
Lab: Deploying Models in Azure Machine Learning
After completing this module, you will be able to:
- Run Azure Machine Learning experiments on Azure Databricks compute
- Deploy models trained on Azure Databricks to Azure Machine Learning
Contacto: Javier Lozano - email: info@nanforiberica.com - Teléfono +34915620454
Protección de datos del participante: RGPD
NANFOR IBÉRICA SL garantiza la protección y confidencialidad de los datos personales que nos proporcionen de acuerdo con lo dispuesto en el Reglamento General de Protección de Datos de Carácter Personal (UE) 2016/679 del Parlamento Europeo y del Consejo, de 27 de abril de 2016 y la Ley de Servicios de la Sociedad de la Información y Comercio Electrónico 34/2002 de 11 de Julio (LSSI-CE). Le informamos que su dirección de correo electrónico, así como el resto de los datos de carácter personal, tienen la finalidad de gestionar las comunicaciones y relaciones formativas por vía electrónica. En cumplimiento de lo establecido en el RGPD, usted podrá ejercer sus derechos de acceso, rectificación, cancelación/supresión, oposición, limitación o portabilidad en los términos establecidos en el Reglamento General de Protección de Datos. El responsable del tratamiento es NANFOR IBÉRICA SL con domicilio en C/ Príncipe de Vergara 95 1ºD. 28006, Madrid, o bien mediante correo electrónico en la dirección soporte@nanforiberica.com, adjuntando copia de su DNI.